The Planetary Ball Mill PM 100 is a powerful benchtop model with a single grinding station and an easy-to-use counterweight which compensates masses up to 8 kg. It allows for grinding up to 220 ml sample material per batch.
The extremely high centrifugal forces of Planetary Ball Mills result in very high pulverization energy and therefore short grinding times.
The PM 100 can be found in virtually all industries where the quality control process places the highest demands on purity, speed, fineness and reproducibility.
The mill is ideally suited for tasks in research like mechanochemistry (co-crystal screening, mechano-synthesis, mechanical alloying and mechanocatalysis), or ultrafine colloidal grinding on a nanometer scale, as well as for routine tasks such as mixing and homogenizing soft, hard, brittle or fibrous materials.
"This is a very high-performing instrument used for the preparation of nanomaterials including new crystalline phases of perovskite materials. We have used it extensively for making semiconductor and perovskite nanoparticles, quantum dots, etc. It is a very rugged and user-friendly instrument and we have been using it over a decade without much trouble. Its a highly recommended instrument for material research. "
Pravat Giri
Indian Institute of Technology Guwahati
"I use Retsch ball mill PM100 for preparing sample for hydrogen storage applications. This setup is very useful for the required materials."
Chhagan Lal
University of Rajasthan
"It was really simple and safe to use, easy to clean and it helped me with my thesis investigation. I would really recommend this product. "
Jenifer Sauzameda
Dermabon
"This is such an effective planetary ball mill. As an academic and active laboratory researcher, I would choose the best product to conduct my experiments and the PM 100 is a good example. "
Erkul Karacaoglu
Karamanoglu Mehmetbey University
"Absolutely good to use and easy to handle, long lasting compared to other brands. Highly recommended for regular users."
Md Shalauddin
University of Malaya
"It is a versatile instrument that cuts the grinding time by orders of magnitude."
Dragos Zaharescu
University of California, Davis
Planetary mills with a single grinding station require a counterweight for balancing purposes. In the planetary ball mill PM 100 this counterweight can be adjusted on an inclined guide rail to compensate for the different heights of the centers of gravity of differently-sized grinding jars and thus avoid undesired oscillations of the machine.
Operation of the RETSCH planetary ball mills is particularly safe. They feature a robust Safety Slider which ensures that the mill can only be started after the grinding jar has been securely fixed with a clamping device. The self-acting lock ensures that the jar is seated correctly and securely. This proven solid mechanical system is less failure-prone than electronic solutions - the user has full access to the sample at any time. When the electronic system fails, it is not possible to unlock the jars, for example.
Wet grinding is used to obtain particle sizes below 5 µm, as small particles tend to get charged on their surfaces and agglomerate, which makes further grinding in dry mode difficult. By adding a liquid or dispersant the particles can be kept separated.
To produce very fine particles of 100 nm or less (nano-scale grinding) by wet grinding, friction rather than impact is required. This is achieved by using a large number of small grinding balls which have a large surface and many friction points. The ideal filling level of the jar should consist of 60 % small grinding balls.
For more details on jar filling, wet grinding and sample recovery watch the video.
The graphic shows the result of grinding alumina (Al2O3) at 650 rpm in the PM 100. After 1 h of size reduction in water with 1 mm grinding balls, the mean value of the particle size distribution is 200 nm; after 4 h it is 100 nm.
Grinding of alumina in water with 1 mm grinding balls (left) after 1 hour (blue) and after 4 hours (green)
In another trial, the material was first pulverized for 1 hour with 1 mm grinding balls and then for 3 hours with 0.1 mm grinding balls. In this case, an average size of 76 nm was achieved.
Grinding of alumina with 1 mm grinding balls (1 hour) and then with 0.1 mm balls (3 hours) in water
The results show that planetary ball mills can produce particle sizes in the nanometer range. The choice of the right ball size, the type of liquid and the liquid/solid ratio (viscosity level) play a crucial role in this process.
The performance and the result of sample preparation are also determined by the choice of the grinding jar and its ball charge. The EasyFit range of jars has been specially designed for extreme working conditions such as long-term trials, even at maximum speed of 800 rpm, wet grinding, high mechanical loads and maximum speeds as well as for mechanical alloying. This line of jars is suitable for all RETSCH planetary ball mills.
The new EasyFit grinding jar series features a structure on the bottom of the 50-500 ml jars called Advanced Anti-Twist (AAT). This ensures that the jars are tightly fixed without the risk of twisting, even at high speed, and that wear and tear is drastically reduced. Secure clamping of the jars is made much easier: to find the correct clamping position, a maximum twist of 60° is required.
The geometry of the EasyFit jars in the 50 ml and 250 ml sizes has been enlarged in diameter and reduced in height compared to the previous "comfort" models. This offers two advantages: better grinding results and interchangeable lids, as there are only three diameter dimensions for the entire grinding jar range.
Diameter categories
Both the aeration lid and GrindControl can now be equipped with inlays of different materials. Thus, the lid can be used for, e. g. a steel and a zirconium oxide jar by simply exchanging the inlay.
With a special adapter, co-crystal screening can be carried out in a planetary ball mill, using disposable vials such as 1.5 ml GC glass vials. The adapter features 24 positions arranged in an outer ring with 16 positions and an inner ring with 8 positions. The outer ring accepts up to 16 vials, allowing for screening up to 64 samples simultaneously when using the Planetary Ball Mill PM 400. The 8 positions of the inner ring are suitable to perform trials with different energy input, e.g. for mechanosynthesis research.
To produce optimum grinding results, the jar size should be adapted to the sample amount to be processed. The grinding balls are ideally sized 3 times bigger than the largest sample piece. Following this rule of thumb, the number of grinding balls for each ball size and jar volume is indicated in the table below. To pulverize, for example, 200 ml of a sample consisting of 7 mm particles, a 500 ml jar and grinding balls sized at least 20 mm or larger are recommended. According to the table, 25 grinding balls are required.
Grinding jar nominal volume |
Sample amount | Max. feed size | Recommended ball charge (pieces) | ||||||
Ø 5 mm | Ø 7 mm | Ø 10 mm | Ø 15 mm | Ø 20 mm | Ø 30 mm | ||||
12 ml | до ≤5 ml | <1 mm | 50 | 15 | 5 | - | - | - | |
25 ml | до ≤10 ml | <1 mm | 95 – 100 | 25 – 30 | 10 | - | - | - | |
50 ml | 5 – 20 ml | <3 mm | 200 | 50 – 70 | 20 | 7 | 3 – 4 | - | |
80 ml | 10 – 35 ml | <4 mm | 250 – 330 | 70 – 120 | 30 - 40 | 12 | 5 | - | |
125 ml | 15 – 50 ml | <4 mm | 500 | 110 – 180 | 50 – 60 | 18 | 7 | - | |
250 ml | 25 – 120 ml | <6 mm | 1100 – 1200 | 220 – 350 | 100 – 120 | 35 – 45 | 15 | 5 | |
500 ml | 75 – 220 ml | <10 mm | 2000 | 440 – 700 | 200 – 230 | 70 | 25 | 8 |
The table shows the recommended charges (in pieces) of differently sized grinding balls in relation to the grinding jar volume, sample amount and maximum feed size.
RETSCH planetary ball mills are perfectly suitable for size reduction of, for example, alloys, bentonite, bones, carbon fibres, catalysts, cellulose, cement clinker, ceramics, charcoal, chemical products, clay minerals, coal, coke, compost, concrete, electronic scrap, fibres, glass, gypsum, hair, hydroxyapatite, iron ore, kaolin, limestone, metal oxides, minerals, ores, paints and lacquers, paper, pigments, plant materials, polymers, quartz, seeds, semi-precious stones, sewage sludge, slag, soils, tissue, tobacco, waste samples, wood, etc.
40 g sample
500 ml stainless steel grinding jar
8 x 30 mm stainless steel grinding balls
5 min at 380 rpm
315 g sample
250 ml tungsten carbide grinding jar
15 x 20 mm tungsten carbide grinding balls
5 min at 500 rpm
45 ml sample
125 ml stainless steel grinding jar
7 x 20 mm stainless steel grinding balls
2 min at 400 rpm
200 ml sample
250 ml zirconium oxide grinding jar
15 x 20 mm zirconium oxide grinding balls
30 min at 480 rpm
20 g sample
125 ml zirconium oxide grinding jar
50 x 10 mm zirconium oxide grinding balls
30 min at 380 rpm with direction reversal
170 ml sample
500 ml zirconium oxide grinding jar
8 x 30 mm zirconium oxide grinding balls
3 min at 450 rpm
4 sample pieces
50 ml zirconium oxide grinding jar
3 x 20 mm zirconium oxide grinding balls
2 min at 420 rpm
50 g sample + 70 g oil
50 ml zirconium oxide grinding jar
1100 g 3 mm zirconium oxide grinding balls
2 h at 480 rpm (interval operation with 10 min grinding / 10 min break = net grinding time 1 h)
To find the best solution for your sample preparation task, visit our application database.
Our instruments are recognized as the benchmark tools for a wide range of application fields in science and research. This is reflected by the extensive citations in scientific publications. Feel free to download and share the articles provided below.
Приложения | pulverizing, mixing, homogenizing, colloidal milling, mechanical alloying, mechanosynthesis, nano grinding, co-crystal screening |
Област на приложение | chemistry, биология, геология / металургия, инженеринг / електроника, медицина / фармация, околната среда / рециклиране, селското стопанство, строителни материали, стъкло / керамика |
Материали | мек, твърд, крехък, влакнести - сухи или мокри |
Принцип на смилане | удар, триене |
Максимален размер на захранващият продукт | < 10 мм |
Големина след смилане* | < 1 микрона, за колоидално смилане < 0.1 микрона |
Размер на партидата / количество на пробата* | макс. 1 x 220 мл, макс. 2 x 20 мл при ползване на два смилащи цилиндъра |
Брой на смилачните станции | 1 |
Съотношение на скоростта | 1 : -2 |
Скорост на слънчевото колело | 100 - 650 об./мин. |
Диаметър на слънчевото колело | 141 мм |
G-force | 33.3 G |
Видове смилачни цилиндри | EasyFit, optional areation covers, safety closure devices |
Материал на смилащите части | закалена стомана, неръждаема стомана, волфрамов карбид, ахат, спечен алуминиев оксид, силициев нитрид, циркониев оксид |
Обем на смилачната камера | 12 мл / 25 мл / 50 мл / 80 мл / 125 мл / 250 мл / 500 мл |
Stackable grinding jars | 12 ml / 25 ml / 50 ml / 80 ml |
Adapter for single-use glas vials | 24 x 1.5 ml / 7 x 20 ml |
Настройване времето за смилане | digital, 00:00:01 to 99:59:59 |
прекъсната работа | да, с обръщане на посоката |
Време на прекъсванията | 00:00:01 до 99:59:59 |
Време за пауза | 00:00:01 до 99:59:59 |
Запаметяване на настройки | 10 |
Интерфейс | RS 232 / RS 485 |
Задвижване | Трифазен асинхронен мотор с честотен преобразувател |
Мощност на двигателя | 750 Вата |
Данни за електрозахранването | различни напрежения |
Захранване | еднофазово |
Защита | IP 30 |
Енергийна консумация | ~ 1250 Вата (VA) |
Размери затворена | 640 x 480 (780) x 420 mm |
Нетно тегло | ~ 86 кг |
Стандарти | CE |
Патенти | Counter weight (DE 20307741), FFCS (DE 20310654), SafetySlider (DE 202008008473) |
Смилащият цилиндър е закрепен ексцентрично спрямо слънчевото колело на мелницата. Посоката на движение на слънчевото колело е обратна на посоката на движение на смилащият цилиндър и имат предавателно съотношение 1:-2.
Смилащите топки в цилиндъра се движат под въздействието на наслагвани ротационни движения, така наречените Кориолис сили. Взаимодействието на енергиите на смилащите топки и цилиндъра, довеждат до много ефективно намаляване размера на частиците.
Планетарните мелници с една смилаща станция се нуждаят от противотежест за баланс. В РМ 100 тази тежест може да се настройва посредством наклонена релса и по този начин се избягват допълнителни осцилиращи движения на машината.
Всички останали вибрации се компенсират посредством иновативна система FFCS technology. По този начин РМ 100 осигурява тиха и сигурна работа и позволява инструмента да се остави да работи и без постоянен надзор.
Предмет на технически изменения и грешки